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Abstract. The equilibrium configuration for the wre of a [OlO] screw dislocation in an 
anthracene crystal was calculated using the atomtom potenbhl melhod. I1 was strongly 
anisotropic and complicated due to the characteristic shape and dimension of ule molecule. 
The core region did not spread as much as that of a [OlO](oOl) edge dislocation. Its energy 
was lower than that of the edge dislocation. The Feierls stresses of bolh the edge y d  the screw 
dislocations were estimated by means of gradually increasing an extemal shear stress: that of 
the m e w  dislocation was much larger than thai of the edge dislocation. 

1. Introduction 

It has been recognized through many experimental investigations that dislocations in organic 
crystals play an important role in solid-state reactions (Cohen et a1 1969, Williams and 
Thomas 1972), photoplastic effects (Kojima 1987) and in the formation of local electronic 
states of polarization origin as well as in mechanical properties (Silinsh 1980, Pertsin and 
Kitaigorodsky 1987). Investigations into the atomistic sbllcture of the dislocations are 
essential to understand how the dislocations are concemed with those phenomena However, 
numerical calculations for such investigations in molecular solids have been limited in 
number. A core structure of a dislocation in an organic crystal was first simulated by 
Mokichev and Pakhomov (1982) for an edge dislocation in a naphthalene crystal. A Peierls 
stress in organic crystals was first obtained for polyethylene in an orthorhombic phase 
using computer simulations by Bacon and Tharmalingam (1983). However, for aromatic 
hydrocarbons, such as anthracene, no calculations of Peierls smsses have yet been carried 
out. In recent years, with the aid of vector processors, it has become possible to heat a 
large enough model of crystals composed of large organic molecules. 

In anthracene crystals, both (001)[010] slip systems and (001)[110] systems are 
dominantly operative (Robinson and Scott 1967, Kojima and Okada 1990) and there are 
also cleavage planes parallel to (001). In a previous paper @de et a1 1990, hereinafter 
referred to as I), the present authors investigated the equilibrium configuration for the core 
of a [010](001) edge dislocation in an anthracene crystal using the atom-atom potential 
method. One problem of particular interest was what structure of the dislocation core was 
realised in a crystal composed of disk-like molecules possessing a rigid body. The core of 
the edge dislocation had a spread-out shear misfit along the slip plane, whose width was 
about 5b. where b is the magnitude of the Burgers vector. The maximum of compressive 
strain was only 0.05, even in the core region. 
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On the other hand, the elastic energies of [OIO] screw dislocations are the lowest of 
all passible dislocations (Kojima 1979). Therefore the molecular configurations around the 
[OlO] screw dislocation is more important than that of the edge dislocations. In addition, the 
extrapolated yield stresses to OK were observed to be 4 . 6 ~  p in (001)[010] slip systems 
by compression experiments (Kojima and Okada 1990). where p is the shear modulus. It 
is interesting to know which controls this plastic behaviour, the Peierls stress of screw 
dislocations or of edge dislocations. Thus both Peierls stresses were estimated by means of 
increasing an external stress step-by-step until the dislocation moved over the length of a 
unit lattice vector. 

The molecule was assumed to be rigid and the atom-atom potential method was used 
throughout the present simulations. The magnitude of the radius of the cylindrical region 
where molecules were movable was taken up m 166. In the outer fixed region not only 
the translational displacements of molecules, on the basis of anisotropic elasticity, but also 
the rotations of molecules were taken into account with a linear approximation. Both the 
methods of static energy minimization and of molecular dynamics were used to obtain 
equilibrium configurations. 

2. Core structure of [OlO] screw dislocations 

2.1. Potential and model 

We begin with constrvcting the regular lattice, which is stable under a given potential. The 
functional form used for the pairwise-additive a t o m a m  potentials is the Buckingham 
function, where for empirical parameters we use the values presented by Williams (1966) 
in set N (Craig and Markey 1979, Dautant and Bonpunt 1986, Okada et a1 1989, I). The 
cut-off radius of interaction between atoms is 8 8, throughout the present simulations. All 
parameters used in the present simulations, such as elastic constants, are estimated through 
this potential. The evaluated packing energy and lattice constants (Okada et uf 1989) agree 
well with experimental values (Chaplot et a1 1982). with errors within 2%. 

Our model for dealing with the relaxation of molecules around the dislocation consists 
of two layers. One is the inner cylindrical layer, which consists of the relaxable molecules 
whose centres lie within a cylinder of radius r,, with its centre at the dislocation line. 
The other is the outer rigid layer, where molecules are held in the initial configuration. 
An anisotropic linear elasticity of the dislocation is used in those layers. Translational 
displacements U using the elasticity can be derived from the general equation given by 
Hirth and Lothe (1982). Since the anthracene crystal has a glide symmetry with respect to 
the plane perpendicular to the dislocation line, the displacements U have simple expressions: 

U, =u,=O (1) 

where the dislocation line runs along the x2 axis, and cij are elastic constants whose values 
are given in table 1: orthogonal axes X I ,  xz and x3 are parallel to the crystallographic 
axes a. b and c‘, respectively. In addition to the translational displacements, we introduce 
molecular rotations into the initial and the boundary conditions to a linear approximation, 
as we did in I, because anthracene molecules are not small enough, in comparison with the 
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Table 1. Calculated elastic mnstant~ at OK and experimental values at room remperanue. in 
unit of GPa 
Calculation Experiment 

Cif I Danno er nl Ahnas’eva 
(1968) (1970) 

c , ~  1140 8.92 8.47 
c2z 14.53 13.80 11.56 
c33 20.13 17.00 14.74 
CM 2.85 242 2.63 
,253 4.58 284 2.67 
c a  3.39 3.16 3.99 
c12 10.42 4.63 7.07 
Cl3 8.40 4.49 5.40 
cl5 1.38 8.44 4.14 
cu 7.52 -258 -1.92 
E25 1.90 -259 -2.38 

-5.03 -288 -2.14 
c 6  1.64 1.14 1.40 

magnitude of the Burgers vector, to ignore those rotations. To simulate an infinitely long 
straight dislocation, periodic boundary conditions are imposed along the dislocation line. 

To obtain the equilibrium configuration of molecules around the screw dislocation, we 
have used both the methods of static energy minimization and of molecular dynamics. In 
static minimization, a method of steepest descent is applied at first, and then a Newton 
method is used repeatedly until the energies of molecular rows parallel to the dislocation 
line converge. A line-search method combined with the Newton method was very effective 
in this simulation for the screw dis1ocation:In addition to these calculations, for initial states 
in the static method, we used seven different kinds of molecular configurations obtained 
in the .course of the molecular dynamics calculations at 500K. so as not to obtain local 
minimum states. To obtain the equilibrium configuration in the  molecular^ dynamics, the 
crystal was quenched every time the total kinetic energy reached a maximum (Gibson et 
a! 1960). It was confirmed that all these methods gave the same result with errors within 
10-4-10-6A or radian. 

Figure 1 shows a projection in the ac plane of a unit cell of a perfect crystal. There are 
two non-equivalent molecules: one with a centre of mass at crosses in the figure (hereinafter 
referred to as a comer molecule), the other with a centre of mass at circles in the figure (a 
centre molecule). The perfect crystal of anthracene has a twofold screw axis parallel to the 
b axis at the point 0. The coordinate of the point 0 is &, + fq. where a0 and q are unit 
lattice vectors. The dislocation line is set to run along the b axis. 

To search for an adequate position of the dislocation for the initial and boundary 
conditions, the centre of the dislocation is put at various points along the line?, HH’ and 
W‘ in the figure. The energies after relaxation are compared for these cases using the 
relaxation radius rEl = 66. When we deal with a right-handed screw dislocation, among the 
dislocations with centres on the line HH’. that with its centre at the point 0 had the lowest 
energy and that with its centre at the point HI had the highest energy. For a left-handed 
screw dislocation, their energies would be replaced. Inequality between the points 0 and 
HI comes from the fact that the orientation of the comer molecule is different from that of 
the centre molecules. Among dislocations centred on the line W’, that with its centre at 
the point 0 had the lowest energy. Consequently, the centre of dislocation will be set at 
the point 0 in the following simulations. 



3154 N Ide et a1 

Figure 1. A projection in the ac plane of a perfect crystal. Crosses denote the comer molecules 
and circles denote the centre molecules. The influence on the dislocaLion energy of changing 
the position of the dislwation for the boundary condition was evaluated on the lines HH' and 
W'. 

To evaluate the effects of the model size on molecular configurations, several N O S  were 
made using rEl = 46 (24& 48 relaxable molecules) to 16b (96.k. 758 molecules) in the 
same way as in I. It was confirmed that convergence was much better in the screw dislocation 
than in the edge dislocation; the differences between molecular coordinates obtained with 
r,, = 16b and those extrapolated to an infinitely large model were less than lO-'.k or 
radian. The results of the calculations that will be given in the following subsections were 
obtained by the use of 166 as the relaxation radius ret. 

2.2. Equilibrium configurations around the dislocation 

Figure 2(a) shows a projection in the ac plane of molecular centres and a distribution of 
a shear strain E* (r-'auz/aO, where B is an a~igle from the x ,  axis) before the relaxation, 
and figure 2(b) shows those afier relaxation. The distribution of the strain is strongly 
anisotropic even in an elastic solution. It is due to anisotropy of elastic constants. An 
elastic constant dww in terms of cylindrical coordinates (r, 8, x2) is expressed by the 
elastic constants ci, in terms of Cartesian coordinates as follows: 

cLzA = A cos(2B fa) + B 

where 

(3) 

Substitutions of the calculated values for cjj give A = 1.66GPa. B = 3.12GPa and 
a = 99.4O. This elastic constant has a minimum value of 1.46GPa in the direction 
of 8 = 40.3", and a maximum value of 4.78GPa in the direction of -9 = -49.7". Since 
the latter is three times larger than the former, the distribution of the strain E% is strongly 
anisotropic. The direction for the smallest elastic constant is approximately normal to 
molecular planes and rotations of molecules are easy when a shear stress is applied in that 
direction. 

Figure 2(b) shows that the distribution of the shear strain E% is hardly influenced by the 
relaxation on the slip plane AA'. Rotations of molecules around normal axes of molecules 
contribute to the strain on that plane, so the strain concentrates near the dislocation centre to 
the same extent as in the elastic solution. The maximum value of the shear strain reaches 0.2 



Figure 2. A projection in the (IC plane of molecular centres around a [OIO] screw dislocation: 
(0) before the relaxation and (b)  after the relaxation. A uiangle denotes the dislocation mUe, 
mwscs the comer molecules, circles the cenue molecules. The len@s of mows indicates the 
magnitude of the strain E Z R .  The molecule to which an arrow points is more displaced along 
positive x2 direction than the other molecule c ~ ~ e c t e d  by the arrow. 

while. around the edge dislocation simulated in I, that of a compressive strain is only 0.05. 
On the planes BB' and CC', the distribution of the strain spreads out and has two peaks. In 
these planes, molecules lie close to one another so that the complicated distribution of the 
strain, which reflects the characteristic shape of anthracene molecules, is realised. The shear 
strains at the points D and D' are fairly large, but actual displacements are small because 
the angles subtended by the dislocation centre are small. The molecular configuration, 
mnceming positions and orientations. has a complete twofold symmetry with respect to the 
dislocation centre, while that in a perfect crystal has  a twofold screw symmetry. 

The changes in the Euler angles of the comer molecules on the plane BB' just above 
the slip plane are shown in figure 3 (a), and those of the centre molecules are shown in 
figure 3 (b). The changes reach maxima near the centre; A0 = 6.3". A@ = 1.2" and 
A) = 14.5". This figure shows that the core region does not spread out, in contrast to that 
of the edge dislocation. The changes in are large and this indicates that the rotations 
around the normal axes of molecules are the main ones in the core of the screw dislocation. 

2.3. Energy distribution 

Figure 4 shows equipotential curves AE around the dislocation; AE is the packing energy 
per unit lattice cell relative to that of a perfect crystal. Equipotmtial GUNS become smooth 
only if the energies of a comer and centre molecule are summed, because the effects of the 
shear strains 823 and E,* on the two kinds of molecules are different. The energy distribution 
spreads a little along the slip plane; far from the centre it spreads in a direction 0 = 40" 
from the U axis. The maximum value of the energy, 0.07eV. is 0.02eV smaller than that 
of the edge dislocation, but the strain of the screw dislocation at the centre is much larger 
than that of the edge dislocation. 
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Figure 3. Orientational aspecu of molecules around the dislocation. (U) Changes in Euler 
angles of the comer molecules in the nb plane just above the slip plane and (b)  those Of the 
centre molecules. Circles, Uiangles and crosses denote Euler angles B ,  4 and f, respectively. 

30A 
o x o x o x o x o x o x o x  

O X O X O X O X O X O X O X  

-30A 
30A 

-30A L* b 

Figure 4. Equipotential curves AE (in eV): AE is 
lhe packing energy per unit lattice cell relative lo that 
of a Wect crysM. A hiangle denotes the dislocation 
centre, crosses the comer molecules, circles the centre 
molecules. circles those after relaxation. 

Flgure 5. n e  strain energies per unit length W .  stored 
within a cylindrical region of radius R wilh i o  cenve 
at lhe dislocation line. The abscissa is on a logarithmic 
scale. Crosses denote the energies More relaxation and 

The strain energies per unit length, W, stored within a cylindrical region of radius R, 
against In R, are shown in figure 5 for the configurations before and after the relaxation. The 
pre-logarithmic energy factor after the nlaxation is 0.27eV/bo (7.32 x IO-" Jm-'), which 



Simulation of dislocations in anthracene 3157 

agrees very well with that estimated-from anisotropic elasticity, and is smaller than that 
of the edge dislocation, 0.57eV/ao (1.12 x lO-'OJm-l), where a0 and bo are the lengths 
of the unit lattice vectors ao and 4, respectively. The core energy within a cylindrical 
region of radius 56 is 0.64eVlbo (1.74 x 10-LOJm-'), which is smaller than that of the 
edge dislocation, 1.28 eV/ao (2.51 x J m-l). This shows clearly that the energy of the 
screw dislocation is lower than that of the edge dislocation. 

3. Peierls stress for [010](001) dislocations 

To identify the dislocations which control the slip deformations in (001)[0101 systems, 
the Peierls stresses are calculated not only for the screw dislocation but also for the edge 
dislocation. 

3.1. Method 

The model crystal is the same as that used for the determination of the shuctilre of 
dislocations. The Peierls stress is obtained using the following iterative procedures. 

The stable molecular configuration around a dislocation under no external stress (i.e. 
U,, = 0), such as obtained in the previous section, is taken as the initial state. The external 
stress is increased by Auex at the beginning of each step. In the present slip system, the 
slip plane is normal to the x3 axis, and the Burgers vector 6 is parallel to the xz axis, so the 
most effective component of the stress to move dislocations would be U=. Hence the shear 
stress U= is applied to the crystal as the extemal stress 9.. In the present calculation, the 
values of the increment in stress are 2 x p and 1 x IOwz & for the edge and the screw 
dislocation, respectively, where ,U is the shear modulus obtained from the energy factor of 
the screw dislocations; = (c~c66 - c&'/~ = 2.65 GPa. All the molecules in the crystal 
are translated and rotated in proportion to the strain corresponding to the increased stress. 

Since the molecular configuration obtained above is not in equilibrium, the relaxations 
are repeated until a convergence condition is fulfilled; the convergence condition is 
mentioned in detail in the following subsection. We employed only the Newton method 
with the line search as the relaxation method. 

After the relaxation the position of a dislocation is examined; the coordinates of the 
position are defined as 

for the edge and the screw dislocation, respectively, where is the xz component of the 
Burgers vector density (Viteck et a1 1971). If the position after the relaxation moves over 
more than one lattice repeat distance along the slip plane from its initial position, the extemal 
stress at that step is regarded as an apparent Peierls stress r,. A Peierls stress rp is estimated 
using several values of the apparent Peierls stresses obtained under different conditions. 

3.2. Convergence condition of relarations 

If any component of the displacement vectors of relaxable molecules during one relaxation 
step becomes less than a certain value 6, the molecules are regarded as relaxed and the 
relaxations under that stress are terminated (Minami et a1 1974). The magnitude of the 
convergence criterion affects the results significantly. The dependence of the apparent 
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P [a)8r/ - 6 l3F 
- _I_____ - h 2  - 2 4  I - 

- . -a -  b 
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0 
'0 1 2  3 4 5 6 0 1 2 3 4 5  

6 (lo-'& lO-'rad) 6 (lO-'A. lO-'rad) 

Figure 6. The dependence on the convergence criterion of the apparent Peierls stress of the 
edge dislocation (U) ,  and of tha~ of the screw dislocarion (b). In both figures. full curves denote 
the dependence in the crysral with ,,I = 6b. and bmken curves in thal with r , ~  = Bb. 

Peierls stress r, on the value 6 is shown in figure 6. The extrapolation to the ordinate gives 
the tme value of the apparent Peierls stress in that model size. In the case of the edge 
dislocation, the apparent Peierls stress was affected strongly by the magnitude of 6. The 
ratios of the apparent Peierls mess for 6 = 5 x are 1.6 and 
2.4 for rnI = 6b and 8b, respectively: the units of 6 are 8. or radians, and for the purposes 
of abbreviation are omitted below. Since the same value of the apparent Peierls stress was 
obtained for 6 = 1 x in both cases of r,, = 66 and 8b, it should be 
sufficient to adopt 6 = 1 x as the convergence criterion for the calculation on the edge 
dislocation. On the other hand, in the case of the screw dislocation, the apparent Peierls 
stress is hardly affected by the magnitude of 6. The apparent Peierls stress becomes the 
same value for 6 e 1 x (86). so that we also adopt 
1 x IO-' for the calculation of the screw dislocation. All the results shown below were 
obtained using 6 = 1 x 

3.3. Results 

Figure 7 shows the positions of the edge dislocation, Yd, against the extemal stress, uex, for 
three relaxation radii. In the smaller models the dislocation stops several times before its 
motion reaches one lattice repeat distance, as shown in figure 7(a) and (6). This arises from 
the fact that the edge dislocation has a shear misfit region spreading along the slip plane, 
in which the non-elastic displacements of molecules corresponding to the small motion 
of the dislocation take place by increasing external stress. The effective shess acting on 
the dislocation is relaxed partly even by the small motion, due to the existence of the 
fixed region. For this reason, as the model size increases, the dislocation starts to move 
through fewer small motions, and finally moves through one motion, as shown in figure 7(c). 
Hereinafter, the stress at which the dislocation begins to move and that at which the motion 
reaches one lattice repeat distance will be referred to as r, and 9. respectively. Since in the 
computation of the Burgers vector density a ( x 2 )  the abscissa is taken as the x2 coordinate 
of the molecules in the compression region, the value of yd at y does not reach exactly one 
in the figure; the magnitude of the strain in the compression region in the core is almost 
the same over 56 along the slip plane, and is about 0.05 for r,, = 166. 

Figure 8 shows the positions of the screw dislocation, xd, against the extemal stress, uex. 
In the case of the screw dislocation, the dislocation moves over more than one lattice repeat 

to that for 6 = 1 x 

to 1 x 

(rrel = 66) and 6 .c 5 x 
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+ + + + +  

Figure 7. The positions yd of the edge dislocation Figure 8. The positions of the screw dislocation 
along the slip plane along the slip plane against the external stress a... (a) 
r,, = 6b. (b) r , ~  = Sb and (c) r,l = 166. r,, = 6b, (b) r,l = 8b and (c) r,, = 16b. 

the external stress U-. (a) 

(a-!)  7.a-l (b-l)  

Figure 9. The dependence of lk apparent P e i d s  stress on the mcdel size. The abscissa 
indicates the inverse of Ute mcdel size, The extrapolated value to the ordinate shows lk 
b m  kierls stress rp in the present model. (a) The edge dislocation. (b) The screw dislocation. 

distance through one motion, because the strain caused by the screw dislocation concentrates 
into a relatively narrow region, and the magnitude of the external stress is very large in 
comparison with the case of the edge dislocation. The curves of the positions xd wind, 
particularly in figure (c), because the distribution of the Burgers vector is greatly disturbed 
due to the large external stress. From the position of the peak of the distribution, however, 
the stress at which the dislocation begins to move plastically is easily distinguished. 

Figure 9 shows the effect of the relaxation radius on the apparent Peierls stress. The 
extrapolation of the apparent Peierls stress to an infinitely large model gives a true Peierls 
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stress rp in the present simulation. In the case of the edge dislocation, the value of ?r 
decreases as the relaxation radius rm, increases, but that of ri almost saturates for models 
larger than r,i = 86. Thus the true Peierls stress rp(edge) is regarded as 0.8-LOX p .  
On the other hand, for the screw dislocation, the values of ra are little affected by the model 
size. The true Peierls stress rp(screw) is regarded as 1.9-2.OxlO-' p. Judging from the 
magnitude of these two Peierls stresses, it is the screw dislocations that control the plastic 
deformations in the present slip system of anthracene crystals at low temperature. 

4. Discussion 

It was found that the distribution of the shear strain ~ ; ? e  around the screw dislocation was 
strongly anisotropic and the molecular configu~ations had a complete twofold symmetry 
with respect to the dislocation centre. Its core region did not spread as much as that of the 
edge dislocation. The shear strain, chief in the screw dislocation, could become large near 
the dislocation centre, since rotations of molecules around those normal axes were easily 
caused at low energy and contributed to that strain. The energy of the screw dislocation 
was lower than that of the edge dislocation. 

It was also found from the present simulation that the value of the Peierls stress of the 
screw dislocation was much larger than that of the edge dislocation. This is consistent with 
the relation of the core widths of dislocations, i.e. that the core width of the screw dislocation 
is narrower than that of the edge dislocation. The anthracene crystals are brittle below 
about IOOK, and fracture by external stress without plastic deformation. The extrapolation 
of yield stress to O K  using the experimental values at the temperature from 110-150K 
gives 4.6 x p (Kojima and Okada 1990). This value is between the calculated Peierls 
stress of the edge dislocation and that of the screw dislocation, but the latter is considerably 
higher. 

The elastic constants calculated in the present model were compared with the 
experimental ones to check the reliability and the limitations of the model. The former 
are rather larger than the latter, as seen in table 1. We also used all the other potential 
parameter sets cited by Pertsin and Kitaigorodsky (1987) to evaluate the elastic constants, 
but the differences between the calculated and the experimental values were of the same 
order. One of the reasons for these discrepancies arises from the difference in temperatures 
at which the elastic constants were evaluated. Although a few components have opposite 
signs among three sets of the elastic constants listed in table I, the components that are 
significant to the formation and motion of the screw dislocation, i.e. CM. c66 and c6,  
are in comparatively good agreement. Hence the difference between the calculated and the 
experimental values of the elastic constants do not lead to the large discrepancy between the 
Peierls stress in the present model and the yield stress extrapolated to 0 K in the experiments. 

To investigate the causes of the high Peierls stress of the screw dislocation, we 
evaluated the shape of the Peierls potential (Ide et al 1992). However, only in the range 
(: f 0.114)ao + in figure 1 could the potential curve be obtained, and there was no 
section at which the gradient was so steep that the Peierls stress became large. From the 
behaviour of the screw dislocation under the extemal stress, it may be considered that there 
exists a section with a steep gradient corresponding to a high Peierls stress outside the range 
evaluated. 

To confirm that the high Peierls stress was caused not by an undesirable behaviour in 
numerical treatments (such as falling into a local minimum). but by the characteristic features 
in the crystals composed of large molecules, we also performed the molecular dynamics at 
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finite temperature, in which the potential barrier between a local minimum and the absolute 
minimum can be overridden, owing to the kinetic energy. The model crystal was the Same 
as that used in the static method, and only the molecules in the inner region could move 
under the condition that the temperature and the strain applied to the outer fixed region 
were kept constant. The periodic boundaty condition used above was also used in this case, 
so that kinks were not taken into account; this calculation using molecular dynamics was 
made not to reproduce actual phenomena, but to confirm the result obtained by the static 
method. It was found from the molecular dynamics that the extemal shear stress required to 
move the dislocation had a strong dependence on temperature (Ide et a1 1992). The stress 
at 20K was half that at OK. The stress interpolated at 110K was about 1 x lo-* p, while 
the experimental yield stress at I10K was 1.4 x /.L (Kojima and Okada 1990). This 
discrepancy arises from the lack of kinks in the present model. The dislocation could then 
move freely above 160K without the extemal stress in ow model. Thus the stress required 
to move the screw dislocation decreased continuously as the temperature increased, and the 
value of the stress at OK was not so high judging from those at low temperatures. This 
suggests that the yield stress of anthracene crystals, composed of disk-like molecules, may 
also depend stmngly on the temperature at low temperatures. 

The results for the screw dislocation obtained in the present calculations have several 
similarities to a +(I  11) screw dislocation in BCC crystals: the strongly anisotropic strain 
field, the extension of the strain field out of the slip plane on which the dislocation moves, the 
high Peierls stress, the strong dependence of the mobility of the dislocation on temperature, 
and so on. 

One of the reasons for the high Peierls stress of the screw dislocation is that the molecular 
configuration around molecule E in figure 2 is hard to alter through the extemal shear stress 
OB. In particular, the relative displacement of molecule E to neighbouring molecules in the 
b direction, which is significant to the movement of the screw dislocation, Cannot become 
large. Corresponding to this, the forces on molecule E become large compared with those 
on the others, as the extemal stress increases; the force acting on an atom in molecule E 
at uex = 1.9 x lo-' p is about three times the value of that in a perfect crystal. Thus, 
the characteristic molecular configuration around the dislocation, which reflects the peculiar 
shape of the molecules, results in a large Peierls stress in molecular crystals, although a low 
Peierls stress may be expected because of the weak van der Waals intermolecular interaction. 

The Peierls stress obtained through the present model may be lowered if something that 
can change the molecular configuration around E, such as the deformation of molecules and 
the effect of the stress component except 6 2 3  and so on, is taken into account. However, 
the value of the Peierls stress of the m e w  dislocation is not greatly lowered in comparison 
with the core widths of the screw and the edge dislocation. Thus, it seems certain that the 
plastic deformation is controlled by the screw dislocations in the present slip system at low 
temperatures. 
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